Category Archives: Stress/Strain
The Same but Different!
How can two totally different things be the same in so many ways?
Here is a good example:
Wilson Sensation 16, natural v Wilson Sensation Plus 17, black.

Same but Different!
Looking a the stress/strain portion of the graph, it is nearly impossible to see any difference!
Both strings exhibit good elongation and elasticity.
Finally, when it comes to UTS the Sensation is a little stronger, as you would expect, for a 1.33mm string.
The Sensation Plus measures 1.26mm! So, the UTS is pretty good!
If you have been using Sensation but would like a black, thin string from Wilson simply use Sensation Plus!
Our Questron in Action!
As you know, Racquet Quest is a data-driven business, and data requires numbers. To generate those numbers, we have designed and built several devices.
One device is the Questron!
The Questron is used to test every string we receive, and the data is compiled to understand where that particular string fits.
So, instead of talking about it we have included a short video!
Thank you for watching our Questron in Action! If you have a question, or a particular string of interest, please let us know. We may have already taken the data! On GASP.network there are many graphs of previous tests. GASP.network is a membership ($40.00 one time) site.
SBS…what is it and why should we care?
We have made several posts regarding SBS, which is “String Bed Stiffness” and this is another one!
If you read this post we really need your comment(s), really!
String bed stiffness is the “feeling” when the ball hits the string on a tennis racquet. Due to the various string materials there will be “soft” and “hard” feelings. But wait, there’s more!
The string bed is made up of several strings, some longer called the Main string (M)and some shorter called the Cross string(X). Using “reference” tension each of the sets of string will be pulled at the same machine setting! It the machine is set at 50 pounds the tension head will stop pulling when it feels 50 pounds of resistance, regardless of what he tension inside the racquet head may be.
Let’s say you come into the world headquarters and we ask you what SBS you would like to have? Would you know? Probably not and not many would! We have grown up using the term “reference tension”, not SBS.
Reference tension is “number” you would ask your racquet technician to set the stringing machine tension system on. That number will probably be between 30 and 60 pounds (≈13 to 26 Kilo).
So, depending on many other variables, such as string material, string pattern, stringing machine, stringer technique, etc., you can end up with may different versions of the same “reference tension”.
A better way, and one we have been using for over thirty (30) years, is SBS but not everyone has bought into the concept, even though a qualified racquet technician will have a way to measure SBS! Maybe because it is too much trouble to figure out what your desired SBS from machine X would be from machine A! It is not!
There have been several really good SBS data collection devices but they have been difficult to use, and pricy! Not to mention gigantic!
Would you purchase a SBS data collection device?
How much would you pay for such a device?
Would you prefer a mechanical device or an electronic device?
The device must be portable, that is easily carried in a racquet bag or backpack
Yes or It doesn’t matter
It must be easy to use.
If you use an SBS device would you use a racquet technician that did not know what SBS is or how to measure it?
Thank you for adding your comments to this discussion! It is important stuff!
What’s The Difference?
As tennis players, you must constantly ask “what’s the difference” when it comes to tennis racquets and string! Well, as racquet technicians we ask the same questions!
This post is intended to showcase the differences of string in testing, not playing, however, some of the data may be noticeable to the player in certain situations.
What this graph shows us, in addition to our trying to save a tree by printing on the back of previously used paper, is that each of these stings will provide almost the same performance. This is indicated by the curve and how closely related the strings are.

Tensile Strength Comparison
The differences you do see here can be attributed to the gauge, or diameter, of the string, with the largest diameter (Tour Bite) having the highest tensile strength. Down in the “hitting” displacement range (way below the 39.9mm!), there is very little difference.
The tensile strength can be a factor as the string begins to “notch” or otherwise come apart. Each of the strings in this graph is monofilament so notching would be the failure mode in a racquet.
And The Winner Is…
The winner is Tecnifibre MultiFeel 17!
This string, MultiFeel, is a very “soft” polyurethane bonded construction that offers playability and a good value!

Tecnifibre MultiFeel !7 Gauge
This graph shows the high elongation and nice elasticity of this string. The fairly linear slope up to failure would indicate some consistency of shot all the way up to breakage!
The knot strength is pretty good for a thin multifilament and we can say from experience that the know is going to be fine when property “tightened” and large enough to not slip bak into the grommet barrel.
If you are considering a multifilament this would be a good one to try!